SunTrac Design Team Presentation 2

09 October, 2019 - Northern Arizona University

Kadeja Alhossaini Nathan Firor Edwin Smith Ethan Vieane

Project Description

The task for this capstone project is to design a braze welding jig that is compatible with SunTrac's 4', 6' and 8' solar thermal panel.

- Create detailed drawings
- Provide a 1:4 scaled model
- Build first braze welding jig
- Ensure design is easily repeatable

SunTrac will take our drawings and build multiple braze welding jigs over the next three years as they expand to a bigger facility.

Figure 1: 8' Braze Welding Jig

Vieane 1

Black Box Model

Figure 2: Black Box Model

Functional Decomposition Model

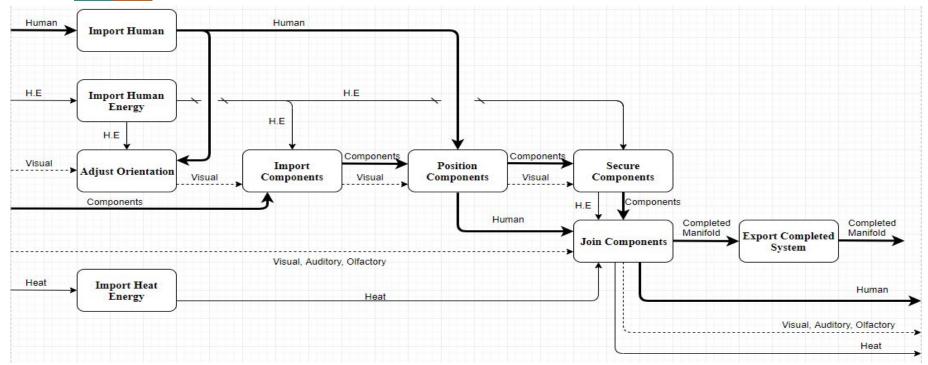


Figure 3: Functional Decomposition

Vieane 3

Concept Generation

We met with SunTrac to know what the client was looking for in the design of the jig. While SunTrac was open to new ideas they wanted the following:

- A skeleton for easy access.
- Multiple locking positions.

Figure 4: SunTrac, Tempe, AZ.

Figure 5: Meeting with SunTrac

Concept Generation

After speaking with SunTrac the concepts were generated by using the Gallery Method.

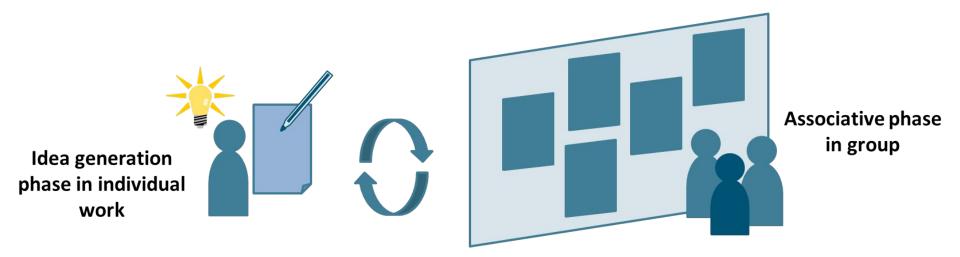
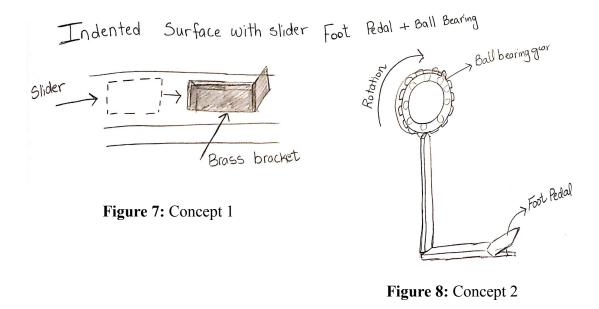



Figure 6: Gallery Method [1]

Alhossaini 5

Concept Generation

Some of the creative concepts the team came up with:

Swivel Latch Mechanical Figure 9: Concept 3 U-Standoff goesin Rigid

Figure 10: Concept 4

Alhossaini 6

Concept Evaluation - Pugh Chart Table 1: Pugh Chart

Concept / Criteria	Datum	D.A. 1	D.A. 2	D.A. 3	D.A. 4	D.A. 5	D.A. 6
Safe To Operate	D	S	S	S	S	S	S
Cost Within Budget		S	-	-	S	-	S
Fit a 4', 6', 8' Manifold	А	+	+	+	+	+	+
Machinable Parts		S	S	S	S	S	S
Fits within 5'x5' square	Т	+	+	+	+	+	+
Easy access to Copper		+	+	+	+	+	+
Rotate and Lock	U	+	S	+	+	+	+
Durable and Robust		-	S	-	S	S	+
Reliable	М	S	-	-	+	-	S
Σ+		4	3	4	5	3	5
Σ-		1	2	3	0	2	0
ΣS		4	4	2	4	4	4
ΣNet		3	1	1	5	1	5

Firor 7

Concept Evaluation - Top 3 Design Alternatives

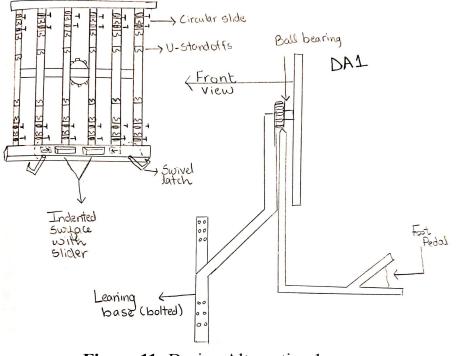
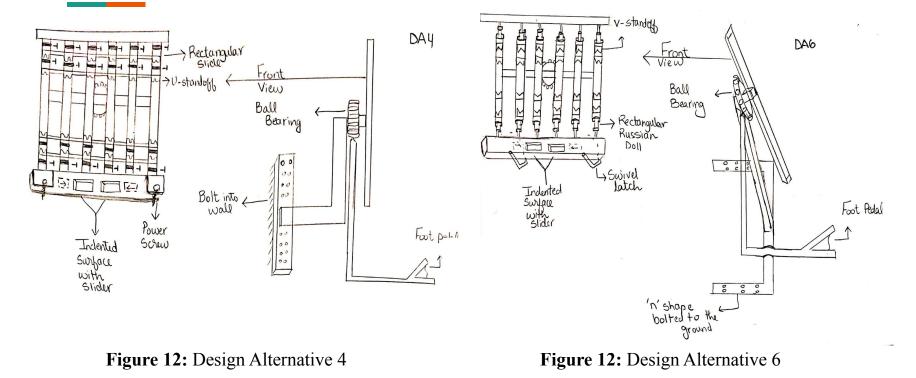
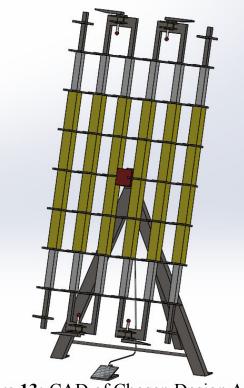



Figure 11: Design Alternative 1

Concept Evaluation - Top 3 Design Alternatives


Firor 9

Concept Evaluation - Decision Matrix

Criterion	Weight	Design Alternatives (DA's)							
		DA1		D	A4	DA6			
Melting Temperature	0.08	100	8	100	8	100	8		
Force to Rotate	0.07	90	6.3	90	6.3	90	6.3		
Cost	0.17	60	10.2	60	10.2	60	10.2		
Versatility	0.11	100	11	100	11	100	11		
Standardized Parts	0.1	100	10	100	10	100	10		
Footprint	0.08	90	7.2	95	7.6	90	7.2		
Degree of Rotation	0.1	100	10	100	10	100	10		
Adaptability	0.07	100	7	100	7	100	7		
Durability	0.11	80	8.8	85	9.35	85	9.35		
Error	0.11	70	7.7	75	8.25	75	8.25		
Totals	1	1	86.2	1	87.7	1	87.3		
Relative Rank		3		1		2			

Table 2: Decision Matrix

The Concept - 3D CAD Model

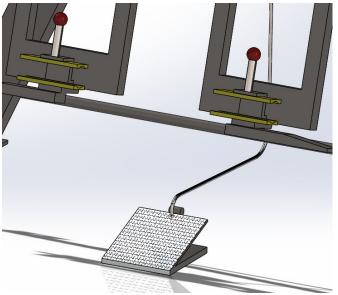


Figure 14: CAD Foot Pedal and Power Screw

Figure 13: CAD of Chosen Design Alternative

Budget Planning - Bill of Materials

Table 3: Bill of Materials

))		Bill o	f Materials					
		Team		Suntrac						
Part #	Part Name	Qty	Description	Functions	Material	Dimensions	Cost	Link to Cost estimate		
1	Steel tube	6	4 foot center	Comrpises of the stationary middle skeleton structure	Carbon Steel	2.5" x 2.5" x 4'	\$32.16	https://www.mcmaster.com/steel-tubing		
2	Steel tube	12	Variable length	Slides in part # 1 to allow for manifold variation	Carbon Steel	2.25" x 2.25" x 2'	\$14.52	https://www.mcmaster.com/steel-tubing		
3	Steel tube	12	Variable length	Slides in part # 2 to allow for manifold variation	Carbon Steel	2" x 2" x 1 '	\$6.75	https://www.mcmaster.com/steel-tubing		
4	Steel beam	2	End structure	Stations part # 6	Carbon Steel	2.5" x 2.5" x 52"	\$36.18	https://www.mcmaster.com/steel-tubing		
5	Steel beam	3	Tripod	Holds welding jig upright	Carbon Steel	2.5" x 2.5" x 8'	\$62.62	https://www.mcmaster.com/steel-tubing		
6	L Bracket	2	End structure	Stations the horizontal (top and bottom) copper pipes	Mild Steel	2.5" x 2.5" x 1" x 22.875"	\$120	https://www.mcmaster.com/corner-brackets		
7	L Bracket	8	Pipe fastener	Secure vertical pipes	Mild Steel	2.5" x 2.5" x 1" x 52"	\$273	https://www.mcmaster.com/corner-brackets		
8	Power screw	2	Pipe fastener	Secure horizontal pipes	Mild Steel	Thread size 1/4" length 9"	12.855	https://www.mcmaster.com/power-screws		
9	Foot switch	1	Washdown protection foot switch	Wedges in gear to stop rotation	Iron housing with Aluminum gaurd	N/A	\$126.52	https://www.mcmaster.com/foot-switches		
10	Steel plate	1	Bracket slide holder	Secures the mounted bracket	321 Stainless Steel	6" x 6"	\$4.27	https://www.mcmaster.com/steel-plates		
11	Bearing	1	Ball bearing	Allows rotation of skeleton frame	Steel	ID 1.25" Housing ID 2 5/8"	\$65.06	https://www.mcmaster.com/ball-bearings		
12	Gear	1	Rotating gear	Attached to ball bearing to allow for locking by part # 9	Mild Steel	ID 1.25" OD 3.96"	\$30.67	https://www.mcmaster.com/gears		
13	Rod	1	Vertical rod	Connects from part # 9 to 12 to stop rotation	Carbon Steel	Dia 3/8" length 72"	\$27.87	https://www.mcmaster.com/steel-rods		
14	Nut	2	Power screw tightener	fastens to part # 8 for tightening of horizontal pipes	Cast Iron	1.344" Dia 3/4" Ingth	\$25.99	https://www.mcmaster.com/power-screws		
			Total	Cost Estimate:			\$838.46			

Budget Planning - Other Expenses

Final design: \$838

Prototyping (¼ scale model): \$250

Travel: \$100

Spare parts: TBD

Broken parts: \$200

Total estimated: \$1,390

Thank You For Listening

Any Questions?

References

 Startseite, Z. (2019). Gallery Method - Methodos @ TU Braunschweig. [online] Methodos.ik.ing.tu-bs.de. Available at: https://methodos.ik.ing.tu-bs.de/methode/GalleryMethod.html [Accessed 7 Oct. 2019].
 "Carr," McMaster. [Online]. Available: https://www.mcmaster.com/. [Accessed: 08-Oct-2019].